Applications of Normal Quantile Plots

David Rose

June 13, 2011

David Rose ()

Applications of Normal Quantile Plots

June 13, 2011 1 / 7

Given a ranked SRS of size $n, x_1 \le x_2 \le \cdots \le x_n$ how does software associate with each x_i a standard normal z_i with equivalent quantile position? The TI-84 formula is as follows: for each $i = 1, \ldots, n, x_i$ corresponds to

$$z_i = \text{InvNorm}(\frac{2i-1}{2n}).$$

i.e., The ranked sample data is associated positionally with the midpoints of the intervals obtained by partitioning [0, 1] into n equal length subintervals. In particular, x_1 is associated with $\frac{1}{2n}$, x_2 is associated with $\frac{3}{2n}$, etc., and lastly, x_n is associated with $1 - \frac{1}{2n}$. To effect a normal quantile plot manually, place the sample data x in L2 and do an ascending sort and then place numbers $1, 2, 3, \ldots, n$ in L1. Set $Y1 = InvNorm(\frac{2X-1}{2n})$ in the function register, and on the main screen of the calculator, perform $Y1(L1) \rightarrow L1$ to place the z_i 's in L1. Then, the normal quantile plot for the L2 sample data is simply the scatterplot of L1 horizontally against L2 vertically. Now regression analysis is possible.

An Informal T-Test for Approximate Normality

What is wrong with the χ^2 -GOF test for normality? First, the sample size should support at least five intervals with at least an expected frequency of 5 [F](some say 10 [C]) in each interval. i.e., This requires samples sizes from 25 to 50. Often when we need normality checked such as in χ^2 -procedures or F-procedures, sample sizes are small. And, how can the null hypothesis " H_0 : The population is normal" be supported without considering the power of the test, the probability that a false H_0 will be rejected? Such tests are really tests for non-normality. We offer the following informal linear regression t-test for normality. Do a LinReg T-Test (on the TI-84) with the sample data X in L2 and the Z =InvNorm $\left(\frac{2i-1}{2n}\right)$ in L1 for i = 1, ..., n. Then rejection of the null hypothesis " $H_0: \rho = 0$ " is affirmation of linear correlation and hence normality. (Formally, this method is considered invalid due to dependence of the ordered x's, though the sample as a whole is random. The correction for this is the excellent Shapiro-Wilk test for normality [SW], one of the most powerful of tests for normality [M].

To justify one way ANOVA with $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$ it is required that all populations be normal with homoscedasticity, i.e., that

$$\sigma_1=\sigma_2=\cdots=\sigma_k.$$

But, the requirements are observable in the k independent SRS normal quantile plots. First, the plots must demonstrate linearity (normality of the populations) and secondly, having nearly parallel regression lines implies equality of the σ_i 's. In fact,

$$\widehat{x} = a + bz \Rightarrow z = \frac{\widehat{x} - a}{b} = \frac{\widehat{x} - \mu}{\sigma} \Rightarrow a = \mu \text{ and } b = \sigma.$$

 $\Rightarrow \widehat{x} = \mu + \sigma z$

Example: 3-Population ANOVA Justification

samples: {15, 16, 21, 22, 23, 28, 30, 32} $\subset N(24, 5) \rightarrow b = 6.18 (\Box)$ {23, 28, 28, 31, 31, 31, 32, 34, 36, 40} $\subset N(32, 5) \rightarrow b = 4.62 (+)$ {8, 10, 11, 13, 14, 14, 14, 20, 21, 21, 28, 32} $\subset N(18, 5) \rightarrow b = 7.11 (\cdot)$

Normal Quantile Plot T-Test for Normality

```
sample: {15, 16, 21, 22, 23, 28, 30, 32} \subset N(24, 5)
r^2 = 0.9565613319
r = 0.9780395349
```


[C] H. Cramér, *Mathematical Methods of Statistics*, Princeton University Press, 1946.

[F] R. A. Fisher, *Statistical Methods for Research Workers*, 8th edition, Oliver and Boyd, Edinburgh, 1941.

[M] Albert Madansky, *Prescriptions for Working Statisticians*, Springer-Verlag, New York, 1988.

[MMC] David S. Moore, George P. McCabe, and Bruce A. Craig, *Introduction to the Practice of Statistics*, 6th edition, W. H. Freeman and Company, New York, 2009.

[SW] S. S. Shapiro and M. B. Wilk, An analysis of variance test of normality (complete samples), *Biometrika*, **52** (1965), 591-611.