Paul the Octopus: A Simulation Activity

Laura Schultz Rowan University

http://www.cnn.com/2010/SPORT/football/07/08/germany.octopus.explainer/index.html

 Paul the Octopus correctly predicted the winners of all eight World Cup soccer matches he was asked to predict in 2010.

- Paul the Octopus correctly predicted the winners of all eight World Cup soccer matches he was asked to predict in 2010.
- Is this evidence that Paul actually has psychic powers?

- Paul the Octopus correctly predicted the winners of all eight World Cup soccer matches he was asked to predict in 2010.
- Is this evidence that Paul actually has psychic powers?
- How unusual would this outcome be if Paul was just randomly guessing?

- Paul the Octopus correctly predicted the winners of all eight World Cup soccer matches he was asked to predict in 2010.
- Is this evidence that Paul actually has psychic powers?
- How unusual would this outcome be if Paul was just randomly guessing?
- How could we figure this out??

coin toss = prediction by Paul

coin toss = prediction by Paul

heads = correct prediction

coin toss	=	prediction by Paul
heads	=	correct prediction
tails	=	wrong prediction

coin toss	=	prediction by Paul
heads	=	correct prediction
tails	=	wrong prediction
chance of heads	= ½ =	probability of predicting a correct World Cup match winner if Paul is just guessing

coin toss	=	prediction by Paul
heads	=	correct prediction
tails	=	wrong prediction
chance of heads	= ½ =	probability of predicting a correct World Cup match winner if Paul is just guessing
one set of 8 coin flips	=	one set of 8 predictions by Paul

Statkey

Statkey

www.lock5stat.com/statkey

www.lock5stat.com/statkey

 Freely available javascript applets with no user login required

www.lock5stat.com/statkey

- Freely available javascript applets with no user login required
- Runs in any web browser on any platform (including smartphones and tablets)

www.lock5stat.com/statkey

- Freely available javascript applets with no user login required
- Runs in any web browser on any platform (including smartphones and tablets)
- Google Chrome App available for offline use

to accompany <u>Statistics: Unlocking the Power of Data</u>

by Lock, Lock, Lock, and Lock

Descriptive Statistics and	Graphs	Bootstrap Confidence Intervals			Randomization Hypothesis Tests		
One Quantitative Variable	•	CI for Single Mean, Median, St.Dev.			Test for Single Mean		
One Categorical Variable		CI for Single Proportion			Test for Single Proportion		
One Quantitative and One Variable	e Categorical	CI for Difference In Means			Test for Difference in Means		
Two Categorical Variables		CI for Difference In Proportions			Test for Difference In Proportions		
Two Quantitative Variable	?S	CI for Slope, Correlation			Test for Slope, Correlation		
Sampling Distributions Mean Pr			roportion				
Theoretical Distributions	Norn	nal t			χ ²	F	
More Advanced Randomization Tests	χ^2 Goodness-of-Fit		2 Test for Association	ANOVA for Difference in Means		ANOVA for Regression	

to accompany <u>Statistics: Unlocking the Power of Data</u>

by Lock, Lock, Lock, and Lock

Descriptive Statistics and	Graphs	Bootstrap Confidence Intervals			Randomization Hypothesis Tests		
One Quantitative Variable	•	CI for Single Mean, Median, St.Dev.			Test for Single Mean		
One Categorical Variable		CI for Single Proportion			Test for Single Proportion		
One Quantitative and One Variable	e Categorical	CI for Difference In Means			Test for Difference in Means		
Two Categorical Variables		CI for Difference In Proportions			Test for Difference In Proportions		
Two Quantitative Variable	es	CI for Slope, Correlation			Test for Slope, Correlation		
Sampling Distributions		Mean			Proportion		
Theoretical Distributions	Norn	nal t			χ ²	F	
More Advanced Randomization Tests	χ ² Goodness-	of-Fit 🧳	² Test for Association	ANOVA for Difference in Means		ANOVA for Regression	

Statkey Randomization Test for a Proportion Custom Data * **Edit Data** Generate 1 Sample Generate 10 Samples Generate 100 Samples Generate 1000 Samples **Reset Plot** Randomization Dotplot of Proportion Null hypothesis: p = 0.5samples = 0Left Tail Two-Tail Right Tail mean = NaNst. dev. = NaNEdit data Please select values for count and sample size. count: sample size: 8 Ok

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Randomization Test for a Proportion

