YMS Ch I 0: Introduction to Inference **AP Statistics at LSHS** Mr. Molesky

1	Ţ	2	3		4
5			6		
		7	8		
	9			10	
	11				
12					
				13	
	15		14		
16		17			
18			19		
20					
21		22			

Across

- 3. The size of the margin of error is determined by the sampling standard deviation and the _ value.
- 5. One way to decrease the width of an interval is to _ your confidence level.
 7. Significance Level (Greek letter)
- 8. Hypothesized claim about the population parameter: _ Hypothesis.
- 10. If we mistakenly reject a true null hypothesis. we've committed a Type-I _
- 11. Statistical tool for estimating a population parameter: Confidence
- 12. Inferential calculations depend upon an understanding of the _ distribution.
- 15. The first part of a confidence interval
- 17. A numeric measure that describes a sample.
- 18. The practice of using sample information to estimate a parameter or test a claim: Statistical _
- 19. Significance tests can have one or two _.

Down

- 1. In order to calculate a confidence interval, you must find the standard _ of the sampling distribution.
- 2. Another name for the probability of observing a sample value at least as extreme as a given on under a null hypothesis.
- 3. The width of an interval is determined by the _
- 4. The hypothesis for which we gather statistical evidence.
- 6. The margin of error can be controlled by increasing _ size.
- 9. When we wish to test a claim about a parameter, we conduct a test of .
- 12. When we observe a sample value that is extremely unlikely under a null hypothesis, we say it is "statistically "
- 13. The second part of a confidence interval: _ of Error

Across

- 20. If we calculate a low P-value, we $_$ the null hypothesis.
- 21. Failing to reject a false null is considered a Type Error
- Type_Error
 22. A description of all values a statistic takes on and the frequency of each value: Sampling _

Down

- 14. A numeric measure that describes a population.
- 16. The probability of correctly rejecting a false null hypothesis is called the _ of the test.