
YMS Chil: Inference for Means

AP Statistics at LSHS

Mr. Molesky

Across

4. The hypothesis we are gathering evidence for:

6. If Ha: $\mu \neq k$, we perform a ____ test.

8. If data are the result of a paired experiment/ setting, we can perform a _____ pairs test on the differences.

9. To estimate a mean or difference of means, we construct a ___ Interval.

12. t-distributions are more _____ than normal distributions.

15. The sampling variability of means: Standard _____ of x-bar.

16. The "claim" we are testing in a hypothesis test is called the ____ hypothesis.

18. For df=25, the t* for 95% confidence is _____ than 1.96.

19. Name of the brewery that played a role in the development of t-distributions.

21. If our df is not on the table, we should use a conservative approach and use the ___ df.

Down

1. TI command to perform a hypothesis test for a single mean.

2. To test a claim about a parameter, we perform a test of ___.

3. t-distributions are _____ than normal distributions.

5. In a CI, the margin of error is controlled by sample size and <u>value</u>.

6. TI command to build an interval for a single mean.

7. Another name for a t-score: ____-statistic 10. Since we don't know sigma for the population, we have to rely on the sample standard ____.

11. Name of "Śtudent's" famous statistician friend.
13. t-procedures are ____. That is, they are accurate as long as the sample data is not strongly skewed and doesn't contain outliers.
14. We reject the null if the p-value is less than

14. We reject the null if the p-value is less than

 $\overline{17}$. In a single sample setting, (n-1) = ___ of freedom.

Across

22. df= degrees of ___.
23. If our p-value is very small, our evidence is ____ significant.

Down

19. Real name of "Student" 20. As n gets larger, the t-distributions become approximately ___.