Chapter 14: Inference for Distributions of Categorical Variables:

Chi-Square Procedures

Key Vocabulary:

- chi-square test for goodness of fit
- segmented bar chart
- chi-square statistic
- expected count

- observed count
- degrees of freedom
- chi-square distribution
- components of chi-square
- cell counts

- r x c table
- cell

Calculator Skills:

- sum ()
- χ^2 cdf (leftbound, rightbound, df)
- χ^2 pdf (X, df)
- Shade χ^2 (leftbound, rightbound, df)
- χ²-Test

14.1 Test for Goodness of Fit (pp.834-848)

- 1. What does the term *expected count* mean, and how is it calculated?
- 2. What is the *chi-square statistic*?
- 3. What is the difference between the notation X^2 and χ^2 ?
- 4. How many degrees of freedom does the *chi-square distribution* have?

The	Practice of Statistics (3 rd Edition) - Yates, Moore, & Starnes
5.	State the general form for the null hypotheses for a χ^2 goodness of fit test.
6.	State the general form for the alternative hypotheses for a χ^2 goodness of fit test.
7.	What conditions must be met in order to use the <i>goodness of fit test</i> ?
8.	What is the shape of a <i>chi-square distribution</i> ? What happens to the shape as the degrees of freedom increases? (Illustrate with a diagram)
9.	What is meant by a <i>component</i> of chi-square?
10.	What does the largest <i>component</i> of chi-square signify?

11. Why is it necessary to perform follow-up analysis to a chi-square test?

14.2	Inference	for	Two-Way	Tables	(pp.849-885))

- 1. What information is contained in a two-way table for a chi-square test?
- 2. State the null and alternative hypotheses for comparing more than two population proportions.
- 3. How do you calculate the expected count in any cell of a two-way table assuming the null hypothesis is true?
- 4. How many degrees of freedom does a chi-square test for a two-way table with r rows and c columns have?
- 5. What requirements must be checked before carrying out a Chi-square test?
- 6. Summarize how to carry out a Chi-square Test for Homogeneity of Populations:

The Practice of Statistics (3rd Edition) - Yates, Moore, & Starnes				
7. State the null and alternative hypotheses for a Chi-square test for Association/Independence.				
8. Summarize how to carry out a Chi-square Test for Association/Independence:				